00: Course Overview

CSCI4181/6802 Bioinformatics Algorithms Finlay Maguire (finlay.maguire@dal.ca)

Why am I teaching this course?

Affiliations:

Computer Science Community Health & Epidemiology Institute of Comparative Genomics

Public Health Alliance forGenomic Epidemiology

Antimicrobial Resistance

Mostly Suceptible

Mostly Resistant

What is bioinformatics?

Using **computers** to understand **biology**

Using computers to understand biology

Why do we care about algorithms in bioinformatics?

Lots of data

Cov2tree: taxonium 13.4 million SARS-CoV-2 Genomes

Lots of messy data

Book2 - Excel

Review

Ε

Data

5

~ A^ A

D

Biological data is special:

• Data is shaped by evolution i.e., "what works at a given time" not "what is pretty and easy to understand"

- Data is shaped by evolution i.e., "what works at a given time" not "what is pretty and easy to understand"
- Correct answer is often not obvious we need statistics

- Data is shaped by evolution i.e., "what works at a given time" not "what is pretty and easy to understand"
- Correct answer is often not obvious we need **statistics**
- Can't agree on many of the objects and questions!

- Data is shaped by evolution i.e., "what works at a given time" not "what is pretty and easy to understand"
- Correct answer is often not obvious we need **statistics**
- Can't agree on many of the objects and questions!
 Philosophy of Biology infuses what we do in many interesting ways

What are we actually going to learn?

1.

2.

3.

4.

1. **Introduction:** Biological foundations

4.

3.

- 1. **Introduction:** Biological foundations

0.2 B

Agrang 0.1 }

2. Homology: Comparing biological sequences

K-ELQRAASLTIEV KDEGQK--SLVIDV

0	6	\$googo	1
1	3	gol\$go	0
2	0	googol	\$
3	5	l\$goog	0
4	2	ogol\$g	0
5	4	ol\$goo	g
6	1	oogol\$	g

3.

- 1. Introduction: Biological foundations

2. Homology: Comparing biological sequences

K-ELQRAASLTIEV KDEGQK--SLVIDV

6 \$googo
3 gol\$go
0 googol
5 1\$goog
2 ogol\$g
4 ol\$goo
1 oogol\$

3. Assembly: Recovering genomes from sequencing data

- 1. Introduction: Biological foundations

2. Homology: Comparing biological sequences

K-ELQRAASLTIEV KDEGQK--SLVIDV

	6
	1
	2
	3
	4
Fin the second s	5

1 3 gol\$go o 2 0 googol \$ 3 5 l\$goog o 4 2 ogol\$g o 5 4 ol\$goo g 6 1 oogol\$ g

6 \$googo 1

3. Assembly: Recovering genomes from sequencing data

4. Phylogenetics: Inferring evolutionary relationships

- 1. Introduction: Biological foundations

2. Homology: Comparing biological sequences

K-ELQRAASLTIEV KDEGQK--SLVIDV

	0	6	\$googo	l
	1	3	gol\$go	0
	2	0	googol	\$
\	3	5	l\$goog	0
1	4	2	ogol\$g	0
- En	5	4	ol\$goo	g
	6	1	oogol\$	g

3. Assembly: Recovering genomes from sequencing data

4. **Phylogenetics:** Inferring evolutionary relationships

5. Machine Learning: Encoding and using biological data in machine learning

General Overarching Theme

How are we going to learn?

Lectures, practical assignments, and a paper review

- 22 lectures (every Tuesday and Thursday)
 - Guest lectures by Dr. Ryan Fink, Prof. Robert Beiko, and Alex Manuele

Lectures, practical assignments, and a paper review

- 22 lectures (every Tuesday and Thursday)
 - Guest lectures by Dr. Ryan Fink, Prof. Robert Beiko, and Alex Manuele
- 4 Practical Assignments (due via Brightspace 1 week after release)
 - 1. Alignment and Distant Homology (20%)
 - 2. Genome Assembly (20%)
 - 3. SARS-CoV-2 Genome Analysis (20%)
 - 4. Prediction of AMR Phenotypes (20%)

Lectures, practical assignments, and a paper review

- 22 lectures (every Tuesday and Thursday)
 - Guest lectures by Dr. Ryan Fink, Prof. Robert Beiko, and Alex Manuele
- 4 Practical Assignments (due via Brightspace 1 week after release)
 - 1. Alignment and Distant Homology (20%)
 - 2. Genome Assembly (20%)
 - 3. SARS-CoV-2 Genome Analysis (20%)
 - 4. Prediction of AMR Phenotypes (20%)
- Paper Review
 - Review of recent bioinformatics paper (selection due 2023/03/21)
 - Written Summary due 2023/04/04 (10%)
 - Oral Presentation 2023/04/04 to 2023/04/11 (10%)

Other Class Logistics

- Details on course website
- Contact for office hours
- TA: Jee-in Kim (remote)
- Assignment must be submitted via Brightspace as .docx or .pdf and named:

"BannerID_LastName_As signmentX.{pdf,docx}"

CSCI4181/6802 Bioinformatics Algorithms / Winter 2022-2023

Course Description

Bioinformatics uses computational and statistical approaches to tackle questions of biological function and evolution. The goal of Algorithms in Bioinformatics is to introduce key applications of algorithms, data structures, and encodings to the analysis of large biological data sets. A recurring theme throughout the course will be the disconnect between algorithmic beauty and the horrifying realities of biological data. Every statistical model is violated and every classification comes with an asterisk, as we struggle with even the most basic concepts of 'gene' and 'species', and the challenges of understanding events that happened across ~3.5 billion years. In spite of these challenges, in this age of massive data sets we stand to learn a good deal if the computational tools we use are efficient, robust, properly validated, and correctly applied. The course covers major challenge areas in bioinformatics, each focused on an aspect of DNA or protein sequence analysis. The goal in each case is to define an overarching problem, and then underlying biological system.

2023 Course Details

- Tuesday & Thursday: 8:35-9:55, 1201 Mona Campbell Building
- Office: 4239 Mona Campbell Building, Studley Campus
- Email: finlay.maguire@dal.ca
- Office Hours: No fixed hours, email us for an appointment
- BrightSpace for assignment/paper review submission.
- Syallabus

https://maguire-lab.github.io/bioinformatics_algorithms

Why does any of this matter?

- Justinian Plague (541–549)

https://origins.osu.edu/connecting-history/covid-justinianic-plague-lessons?language_content_entity=en

- Justinian Plague (541–549)
- Black Death (1347-1351 / 1330s to 1830s)

- Justinian Plague (541–549)
- Black Death (1347-1351 / 1330s to 1830s)

https://commons.wikimedia.org/wiki/File:Lord_haue_mercy_on_London.jpg

- Justinian Plague (541–549)
- Black Death (1347-1351 / 1330s to 1830s)
- 3rd Plague (1855-1960 / Today)

https://doi.org/10.1073/pnas.96.24.14043

- Justinian Plague (541–549) -
- Black Death (1347-1351 / 1330s to 1830s) _
- 3rd Plague (1855-1960 / Today) -

Global distribution of natural plague foci as of March 2016

* First administrative level representation

Source: WHO/PED, as of 15 March 2016

Working out the cause of the plague

- 1546 Fracastro: disease from invisible "seeds"
- 1683 Van Leeuwenhoek: microscopic creatures
- **1857 Pasteur:** microbes are living creatures that don't spontaneously appear
- 1876 Koch: microbes cause disease (Koch's Postulates)
- 1894 Shiabasaburō & Yersin: Isolation of microbe in 3rd Plague
- **1896 Simon:** Isolation of microbe in fleas

Bubonic plague is caused by Yersinia pestis

Complex life cycle including fleas and rodents

Vallès X, Stenseth NC, Demeure C, Horby P, Mead PS, et al. (2020) Human plague: An old scourge that needs new answers. PLOS Neglected Tropical Diseases 14(8): e0008251.

Still causes disease but is treatable

Fatality rate (untreated) = **40%-70%** Fatality rate (treated) = **5%-15%**

Becoming less treatable

Becoming less treatable

study (n = 392)

Urich et al. (2012) Antimicrob Agents Chemoterapy

TABLE 2 Antimicrobial MIC distributions for Y. pestis isolates in this

Becoming less treatable

TABLE 2 Antimicrobial MIC distributions for *Y*. *pestis* isolates in this study (n = 392)

	No. of isolates with MIC $(\mu g/ml)^a$										
Antimicrobial					010	÷					
Gentamicin			3	260	110	18	1				
Streptomycin					2	6	119	263	2		
Tetracycline				11	154	224	3				
Doxycycline			4	66	245	77					
Ciprofloxicin	371	20	1								
Levofloxacin	385	7									
Chloramphenicol					34	86	201	71			
Trimethoprim- sulfamethoxazole	9	333	49	1							

Urich et al. (2012) Antimicrob Agents Chemoterapy

MULTIDRUG RESISTANCE IN YERSINIA PESTIS MEDIATED BY A TRANSFERABLE PLASMID

MARC GALIMAND, PH.D., ANNIE GUIYOULE, GUY GERBAUD, BRUNO RASOAMANANA, M.D., SUZANNE CHANTEAU, PH.D., ELISABETH CARNIEL, M.D., PH.D., AND PATRICE COURVALIN, M.D. Plasmid-mediated doxycycline resistance in a *Yersinia pestis* strain isolated from a rat

Nicolas Cabanel^a, Christiane Bouchier^b, Minoarisoa Rajerison^c, Elisabeth Carniel^{a,*}

Transferable Plasmid-Mediated Resistance to Streptomycin in a Clinical Isolate of *Yersinia pestis*

Annie Gulyoule, * Guy Gerbaud, * Carmen Buchrieser, * Marc Galimand, * Lila Rahalison, † Suzanne Chanteau, † Patrice Courvalin, * and Elisabeth Carniel * *Institut Pasteur, Paris, France; and †Institut Pasteur, Antananarivo, Madagascar

How can we control Yersinia pestis?

Need to learn about pathogen to control it

How did Y. pestis evolve?

Tan et al. (2016) Sci Rep https://www.nature.com/articles/srep36116

How did Y. pestis evolve?

Tan et al. (2016) Sci Rep https://www.nature.com/articles/srep36116

How old is *Y. pestis?*

Rasmussen et al. (2015) *Cell* https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644222/

How old is *Y. pestis?*

Rasmussen et al. (2015) *Cell* https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644222/

What makes it so virulent?

			Pathogenic to human?	Presence of pYV plasmid?	Presence of CRISPR spacer to become immune to pYV or pYE854 plasmid?	Presence of <i>inv</i> homolog and N-terminal?	Number of copy of ail homolog?
	<u> </u>	<i>─Y. similis</i> 228			Yes	Yes	4
0.08	Y. pseudotuberculos	s IP31758	Yes	Yes No		Yes	4
	Y. pseudotuberculos	Y. pseudotuberculosis IP32953 Y. pestis KIM10+ Y. pestis CO92			Immune to pYV of Y. enterocolitica	Yes	4
LCAHPY	Y. pestis KIM10+				Immune to pYV of Y. enterocolitica	No	4
	Y. pestis CO92				Immune to pYV of Y. enterocolitica	No	4
	<i>Y. aldovae</i> 670-83		No	No	No	No	1
	Y. aleksiciae 159		No	No	No	No	1
	Y. intermedia Y228		No	No	No	No	1
	Y. rohdei YRA		No	No	No	No	1
-	Y. frederiksenii Y22	5	No	No	Yes	No	1
	Y. kristensenii Y231		No	No	Yes	No	1
	-Y. enterocolitica Y1		Yes	Yes	No	Yes	2
	Y. enterocolitica 808	31	Yes	Yes	No	Yes	2
	<mark>₋Y. ruckeri</mark> YRB		No, but pathogenic to fish	No	No	No	1
	Y. ruckeri Big Creek 74		No, but pathogenic to fish	No	No	No	1
S. liquefacien	s HUMV-21						

S. Ilquelaciens HOMV-21

S. liquefaciens ATCC 27592

Tan et al. (2016) Sci Rep https://www.nature.com/articles/srep36116

How did it become so deadly?

How do we know this?

Molecular biology

How do we know this?

Molecular biology

DNA sequencing

How do we know this?

Molecular biology

Bioinformatics!

We can sequence the Black Death Genome

LONDON, 1393. By JOHN NORDEN.

Need assembly algorithms to get genome

Need homology algorithms to decipher genome

Need phylogenetic algorithms to trace

Need ML algorithms to predict resistance

Doxycycline resistance genes (from Salmonella)

Need ML algorithms to predict resistance

Summary!

- Bioinformatics is using computers to understand biology
- Algorithms are vital to doing this effectively
- We need **bioinformatic algorithms** to solve important problems including in human health

01: Life at Resolution: Organisms, Genomes, Sequences, and so on

CSCI4181/6802 Bioinformatics Algorithms Finlay Maguire (finlay.maguire@dal.ca)

https://upload.wikimedia.org/wikipedia/commons/f/f7/Giant_vir us_CroV_with_its_virophage_Mavirus.png

https://commons.wikimedia.org/wiki/File:CafeteriaRoenbergensis.jpg I

https://www.cam.ac.uk/sites/www.cam.ac.uk/files/styles/conten t-885x432/public/news/research/news/mitochondria.jpg?itok=C IFE3yjc

https://upload.wikimedia.org/wikipedia/commons/f/f7/Giant_vir us_CroV_with_its_virophage_Mavirus.png

https://commons.wikimedia.org/wiki/File:CafeteriaRoenbergensis.jpg

https://www.cam.ac.uk/sites/www.cam.ac.uk/files/styles/conten t-885x432/public/news/research/news/mitochondria.jpg?itok=C IFE3yjc

https://upload.wikimedia.org/wikipedia/commons/f/f7/Giant_vir us_CroV_with_its_virophage_Mavirus.png

https://commons.wikimedia.org/wiki/File:CafeteriaRoenbergensis.jpg IFE3yjc

https://upload.wikimedia.org/wikipedia/commons/f/f7/Giant_vir us_CroV_with_its_virophage_Mavirus.png

Overview

1. All living organisms have several key essential properties

2. Life can be viewed as a **hierarchical structure** with many levels of organization from **genome** (including genomic elements) to the **biosphere**

3. The levels we cannot observe with the naked eye are as (or more) **diverse** as the levels we can observe
Essential properties of an organism Cellularity

Treponema pallidum (www.teachersource.com)

Multicellular

Caenorhabditis elegans (959 cells) (www.ucl.ac.uk)

Essential properties of an organism Reproduction

Tetrahymena thermophila (www.isleepinadrawer.com)

Essential properties of an organism Biochemical Processes and Pathways, such as...

Fermentation

Toxin degradation

http://en.wikipedia.org/wiki/File:Gimchi.jpg http://en.wikipedia.org/wiki/File:NOVAMOXIN_antibiotic.jpg https://www.thestar.com/news/2007/01/28/sydney_tar_ponds_to_be_buried.html https://commons.wikimedia.org/wiki/File:Prochlorococcus_marinus.jpg Antibiotic synthesis

Photosynthesis

Essential properties of an organism Respiration

Glucose - boring!

Arsenic - interesting!

Newmann et al. (1988) *Geomicrobiology Journal* http://www.opencurriculum.org/5363/powering-the-cell-cellular-respiration-and-glycolysis/

Photo: R.Beiko http://en.wikipedia.org/wiki/File:Haloquadratum_walsbyi00.jpg http://www.rcsb.org/pdb/101/motm.do?momID=20

Biosphere **Communities and Ecosystems Populations Organisms** Cells Pathways and Systems Proteins Genes Genomes

Groupings

Building blocks

Genome:

The complete set of heritable genetic material

(DNA for all known cellular organisms)

Your Genome and You

Tremblaya princeps

Mycobacterium tuberculosis H37Rv

1 chromosome 110 genes 138,931 nucleotides

 \bigcirc

1 chromosome 4,000 genes 4.4 million nucleotides

1	2	3	4	5	6	7	8	9	
10	11	12	13	14	15	16	17	18	
				ĥ		Î	or		
	19	20	21	22		x	x 5	< C	
23 chromosomes									
+ mitochondrion									
20,000 genes									
8.1 billion nucleotides									
		chromosomes nitochondrion 0,000 genes (llion nucleotides (times two!)							

Daphnia pulex

12 chromosomes + mitochondrion <u>31,000</u> genes 200 million nucleotides

Paris japonica

?? chromosomes ??? genes <u>150 billion</u> nucleotides

The genome of Deinococcus radiodurans

Gene order

Michael Daly

http://www.genomenewsnetwork.org/articles/07_02/deinococcus.shtml

The DNA sequence of a gene

5´ – ATGCGTTACTTCGAAATGGCAACCCACTCGGGGACTTCCTCCAACGGTTGA- 3

3´ - TACGCAATGAAGCTTTACCGTTGGGTGAGCCCCTGAAGGAGGTTGCCAACT- 5`

http://en.wikipedia.org/wiki/File:DNA chemical structure.svg (Madeleine Price Ball)

DNA to protein

DNA is read in triplets

ATG CGT TAC TTC GAA ATG GCA ACC CAC TCG GGG ACT TCC TCC AAC GGT TGA

MAYFEMATHSGTSSNG*

Threonine

Asparagine 83

Protein sequence and structure

MAYFEMATHSGTSSNG*

A DNA-protein complex

DNA-binding protein ("TATA-box binding protein")

DNA (note the recurring pattern; yellow = phosphate)

Metabolism – Proteins working together

http://www.opencurriculum.org/5363/powering-the-cell-cellular-respiration-and-glycolysis/

Pathways (metabolism + self-replication + signalling)

=

Populations

http://commons.wikimedia.org/wiki/File:Herd_Of_Goats.jpg

Communities and Ecosystems

Overview

1. All living organisms have several key essential properties

2. Life can be viewed as a **hierarchical structure** with many levels of organization from **genome** (including genomic elements) to the **biosphere**

3. The levels we cannot observe with the naked eye are as (or more) **diverse** as the levels we can observe